7,936 research outputs found

    Alternative model of the Antonov problem

    Full text link
    Astrophysical systems will never be in a real Thermodynamic equilibrium: they undergo an evaporation process due to the fact that the gravity is not able to confine the particles. Ordinarily, this difficulty is overcome by enclosing the system in a rigid container which avoids the evaporation. We proposed an energetic prescription which is able to confine the particles, leading in this way to an alternative version of the Antonov isothermal model which unifies the well-known isothermal and polytropic profiles. Besides of the main features of the isothermal sphere model: the existence of the gravitational collapse and the energetic region with a negative specific heat, this alternative model has the advantage that the system size naturally appears as a consequence of the particles evaporation.Comment: RevTex4, 9 pages, 10 figures, Version Submitted to PR

    ISO far-infrared observations of rich galaxy clusters II. Sersic 159-03

    Full text link
    The far-infrared emission from rich galaxy clusters is investigated. Maps have been obtained by ISO at 60, 100, 135, and 200 microns using the PHT-C camera. Ground based imaging and spectroscopy were also acquired. Here we present the results for the cooling flow cluster Sersic 159-03. An infrared source coincident with the dominant cD galaxy is found. Some off-center sources are also present, but without any obvious counterparts.Comment: 6 pages, 4 postscript figures, accepted for publication in `Astronomy and Astrophysics

    Ferromagnetism in the Infinite-U Hubbard Model

    Full text link
    We have studied the stability of the ferromagnetic state in the infinite-U Hubbard model on a square lattice by approximate diagonalization of finite lattices using the density matrix renormalization group technique. By studying lattices with up to 5X20 sites, we have found the ferromagnetic state to be stable below the hole density of 22 percent. Beyond 22 percent of hole doping, the total spin of the ground state decreased gradually to zero with increasing hole density.Comment: 13 pages, RevteX 3.0, seven figures appended in uuencoded form, correcting problems with uuencoded figure

    Absolute Present, Zen and Schrödinger’s One Mind

    Get PDF
    Erwin Schrödinger holds a prominent place in the history of science primarily due to his crucial role in the development of quantum physics. What is perhaps lesser known are his insights into subject-object duality, consciousness and mind. He documented himself that these were influenced by the Upanishads, a collection of ancient Hindu spiritual texts. Central to his thoughts in this area is that Mind is only One and there is no separation between subject and object. This chapter aims to bridge Schrödinger’s view on One Mind with the teachings of Dōgen, a twelfth century Zen master. This bridge is formed by addressing the question of how time relates to One Mind, and subject-object duality. Schrödinger describes the experience of One Mind to be like a timeless now, whereas subject-object duality involves a linear continuum of time. We show how these differing positions are unified in the notion of ‘absolute present’, which was put forward in the philosophy of Nishida Kitarō (1871–1945). In addition, we argue that it is in this notion of absolute present that the views of Schrödinger, Dōgen and Nishida meet

    Metamagnetism in the 2D Hubbard Model with easy axis

    Full text link
    Although the Hubbard model is widely investigated, there are surprisingly few attempts to study the behavior of such a model in an external magnetic field. Using the Projector Quantum Monte Carlo technique, we show that the Hubbard model with an easy axis exhibits metamagnetic behavior if an external field is turned on. For the case of intermediate correlations strength UU, we observe a smooth transition from an antiferromagnetic regime to a paramagnetic phase. While the staggered magnetization will decrease linearly up to a critical field BcB_c, uniform magnetization develops only for fields higher than BcB_c.Comment: RevTeX 5 pages + 2 postscript figures (included), accepted for PRB Rapid Communication

    Realization of logically labeled effective pure states for bulk quantum computation

    Full text link
    We report the first use of "logical labeling" to perform a quantum computation with a room-temperature bulk system. This method entails the selection of a subsystem which behaves as if it were at zero temperature - except for a decrease in signal strength - conditioned upon the state of the remaining system. No averaging over differently prepared molecules is required. In order to test this concept, we execute a quantum search algorithm in a subspace of two nuclear spins, labeled by a third spin, using solution nuclear magnetic resonance (NMR), and employing a novel choice of reference frame to uncouple nuclei.Comment: PRL 83, 3085 (1999). Small changes made to improve readability and remove ambiguitie

    Photoemission spectra of many-polaron systems

    Full text link
    The cross over from low to high carrier densities in a many-polaron system is studied in the framework of the one-dimensional spinless Holstein model, using unbiased numerical methods. Combining a novel quantum Monte Carlo approach and exact diagonalization, accurate results for the single-particle spectrum and the electronic kinetic energy on fairly large systems are obtained. A detailed investigation of the quality of the Monte Carlo data is presented. In the physically most important adiabatic intermediate electron-phonon coupling regime, for which no analytical results are available, we observe a dissociation of polarons with increasing band filling, leading to normal metallic behavior, while for parameters favoring small polarons, no such density-driven changes occur. The present work points towards the inadequacy of single-polaron theories for a number of polaronic materials such as the manganites.Comment: 15 pages, 13 figures; final version, accepted for publication in Phys. Rev.

    Deep far infrared ISOPHOT survey in "Selected Area 57", I. Observations and source counts

    Get PDF
    We present here the results of a deep survey in a 0.4 sq.deg. blank field in Selected Area 57 conducted with the ISOPHOT instrument aboard ESAs Infrared Space Observatory (ISO) at both 60 um and 90 um. The resulting sky maps have a spatial resolution of 15 x 23 sq.arcsec. per pixel which is much higher than the 90 x 90 sq.arcsec. pixels of the IRAS All Sky Survey. We describe the main instrumental effects encountered in our data, outline our data reduction and analysis scheme and present astrometry and photometry of the detected point sources. With a formal signal to noise ratio of 6.75 we have source detection limits of 90 mJy at 60 um and 50 mJy at 90 um. To these limits we find cumulated number densities of 5+-3.5 per sq.deg. at 60 um and 14.8+-5.0 per sq.deg.at 90 um. These number densities of sources are found to be lower than previously reported results from ISO but the data do not allow us to discriminate between no-evolution scenarios and various evolutionary models.Comment: 15 pages, 11 figures, accepted by Astronomy & Astrophysic
    corecore